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Roughening of a growing surface on a crystal with correlated disorder: Influence of nonlinearity
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We study the growth of a crystal in the presence of correlated disorder on the substrate. Using a functional
renormalization group, we show, for a long-range disorder correlation, an initial decay of the Kardar-Parisi-
Zhang-type nonlinearity, though over a large length scale the behavior can be governed by the nonlinearity.
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I. INTRODUCTION cays sufficiently fast. By tuning the power law of the long-
range correlation of the disorder it is possible to go from the

The equilibrium shape of a crystal surface undergoes @ure to the short-range disorder limit.
roughening transition from a rough high-temperature phase Such growth problems for crystals need to take into ac-
to a smooth low-temperature phase as the temperature is dgount the periodicity perpendicular to the crystal surface and
creased[1-3]. Above the roughening transitiof,, the s usually incorporated in the growth equation by a periodic
height fluctuations grow logarithmically with the dimension pinning potential. The low-temperature, flat phase in the
of the systeni. and below the transition the height is smooth roughening transition is due to the relevance of this pinning
and is independent df. The nonequilibrium counterpart, the potential.
growth mechanism of such crystals, provides more insights The nonequilibrium growth problem is complicated. One
about the roughening transitiof2]. It is found that for has to take into account a relevant nonlinear term that ap-
T>T, the growth is inactivated in nature, whereas forpears due to the lateral growth of an oblique surffib@.
T<T, the growth is essentially by nucleation of droplets andOne of the major consequences of this Kardar-Parisi-Zhang
the growth velocity is exponentially slow in the inverse of (KPZ) nonlinearity is a power-lawnot logarithmi¢ growth
the force. For an infinitesimal forde, the mobility that is the  of height fluctuations. In the context of the nonequilibrium
ratio of the growth velocity ané vanishes with a jump from situation of a crystal surface, it has been argued that with a
a finite value at the transition. With a finite force the transi-finite force such a nonlinear term is generated by the inter-
tion is blurred. The flat phase is destroyed over a large lengtplay of the force and this pinning potentiglll]. The
scale and eventually becomes rough. In this case a contingsymptotic behavior of the surface might then be determined
ous decrease of the mobility is observed as the temperatureliyy the nonlinearity that can destroy the roughening transi-
lowered([2]. tion. A rough phase can appear even at low temperature. If

An interesting development in this direction is the inclu- one starts with a nonlinear term, the lateral growth and the
sion of the disorder of the underlying substrgd¢ The mor-  pinning potential combined lead to a phase factor in the pin-
phology of the growing surface shows a transition that is thening potentia[12]. This phase factor is also renormalized as
super-roughening transition at temperatlice. For T>Ty,, one looks at the system over larger length scales. The renor-
the height fluctuation is the same as the high-temperaturmalization of the phase factor makes the identification of the
phase of the usual roughening transition, butTet T, the  phases a nontrivial problem.
surface is rougher than the thermal phase. There is a contro- The disorder substrate case is also not well understood.
versy regarding the roughness of this super-rough phaderevious analysis in this direction with a short-range corre-
[5-7] though a recent numerical treatmg8} favors the size lation of the disorder of the lattice showed that in the pres-
dependence of the roughness asLjin A dynamical ence of the nonlinearity a small driving force is relevant and
renormalization-group treatmefd] shows that forT>T,,  the asymptotic properties are essentially governed by the
the effect of the disorder essentially vanishes over larg@onlinear term since the finite velocity leads to a smearing of
length scales and the scaling properties of the surface are thiee pinning potentiaJ12]. A numerical investigation, on the
same as that of a surface growing on a pure substrate, in thather hand, showed a generation of a quenched random mo-
rough phase. The linear-response mobility in this superbility [13] and hence a different universality class. The latter
roughening transition vanishes continuously, unlike a jumphas been attributed essentially to the effect of a finite lattice
in the case of the roughening transition,Tagis approached cutoff.
from the high-temperature phase. FOK T, there is a In this paper we address the question of a large-scale de-
temperature-dependent dynamical exponent and a nonlineacription of the dynamics of a growing surface in the pres-
response of the system to an external force. The connecticence of a disorder on the underlying lattice and a KPZ-type
between these roughening and super-roughening transitiom®nlinearity discussed before. We consider a very general
has been elucidated, furthermore, by a renormalization-grouform of the disorder correlation. In view of the conflicting
treatment of the growth on a substrate with a correlated disscenario mentioned above, our analysis is based on a
order [9]. The roughening transition turns into a super-renormalization-group technique that involves a finite lattice
roughening transition as the correlation of the disorder deeutoff. A standard way of describing such a growth phenom-
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enon is to start from the equation of motion for the heightF#0, A\ has been found not to be renormalized. The impor-
¢(r,t) at timet and at coordinate in the two-dimensional tant feature that arises in our case is the renormalization of
plane. As mentioned before, the lattice structure orthogonahe nonlinearity due to the nonlocal property of the correla-
to the crystal surface is respected through the inclusion of gor. We obtain a surprising result that this nonlinearity de-
periodic potential. The equation of motion we need to studycays initially with the length scale foF=0. However, the
is therefore the usual sine-Gordon equafié/®,11-13 sub-  possible generation of a force and its relevance can cause a
jected to a constant driving forde, truncation of this decay of the nonlinearity and the growth
asymptotically becomes KPZ-like. In order to treat the long-
m,lf9¢>(f,t) range correlation in general, we use the functional
ot renormalization-grougFRG) approach where the renormal-
— ization of the correlation functior(r) and its effect on the
+N2(Vg)>+F+R(r,b), (1) other parameters are studied.

, ) , The paper is organized as follows. Section Il is devoted to
whergK der_19tes the s_tlffness of the sUffaﬂ@lS_ th? MICIO-  the description of the effective generating functional. In Sec.
scopic mobility, andV is the strength of the pinning poten- |, e derive the functional renormalization-group flow
tial. Here\ represents the Strength of the nOﬂlinearity thatequation with necessary diagrams_ At this point we m|ght
allows a lateral growth of the surface aRdrepresents the add that our approach is simpler than the dimensional regu-
thermal noise at temperatufewith a short-range correlation |arization approach of Ref12]. Details of the calculations
given by are presented in the Appendixes. Section IV is devoted to the

discussion of the asymptotic behavior of the system and con-
(RILOR(r, ) =(2T/m)&(r—r') 5(t—t'). (2) nection with previouys ppredictions. In Sec. V v)\//e summarize

=KV2¢(r,t)—Vsin ¢(r,t)+d(r)]

In the presence of a random substrate we expect that the!r results.

minima of the periodic potential will be randomly shifted

and this is incorporated in this equation through a quenched

random variabled(r). We consider here a general form of

the correlation associated with this random phase shift The growth on a crystal substrate with disorder is de-

d(r), asgoei[d(r)*d(r’)]: y(r—r"), wheregy=1/2m?v? and scribed by the phase disordered sine-Gordon model with a

the overbar denotes an average over the disorder. At thi§PZ nonlinearity as described in E@.). We use the Martin-

point we do not specify the functional form efr —r’), but ~ Siggia-Rose formalisnj16] that requires a response field

later we concentrate on(r)~r 2% We obtain the short- ¢(r,t). Averaging over the disord¢d7] yields the generat-

range disorder case for large and the perfect crystal for ing functionalZz= D¢ D¢ exd A]. Here A= AL+ AY is

a=0. the effective action with the free and the disorder part of the
Various limiting forms of this equations that have beenaction given, respectively, by

studied are as follows(i) The most well-studied limit is

V=0 [14]. (ii) The pure equilibrium growth that shows a L

roughening transition is obtained witb=F=d=0 [3,2]. 0) _ Tq9 7 2_ 7 -1

The width of the growing surface is conventionally described0 ~ J dt dr{ 7 %0¢o(10) ¢°(r’t)[’u° ¢olr1)

by the scalingw(L,t)=LXf(t/L?), wherey is the roughen-

ing exponent and is the dynamical exponent. Above the — 1oV 2eho(r 1) — E[Vqs (r,O]2 +3 (r t)g (r t)]

roughening transition, the width scales aw(L,t) or Yot 2 o oL

~In[Lf(/L?], which implies x=0. In the low-temperature (33)

flat phasew(L,t) is independent oL. (iii) The nonequilib-

rium situation of this pure problem is described by equation

1 with d=0, with or withoutF [11]. (iv) The short-range 1 _ —

correlated disorder on the substrate follows from Agd)=f dt dt’dr dr’z Yo(r=r")po(r,t) do(r',t")

v(r)=godé(r) [4]. This shows the continuous super-

roughening transition(v) A long-range correlated disorder X cog dp(r,t)— do(r',t')], (3b)

with y(r)~ r~2¢ and A=0 shows the interpolation be-

tween the roughening and super-roughening transit8in _

Another interesting limitV=\A=0 and a quenched noise Where ¢o=¢, 3y=2mT, uoe=1, kog=mK, Ag=Am, and

R(¢,r) were used to study the dynamics of driven interfaceJo=mF are the bare quantities. The Gaussian part of the

in a disordered mediurfi5]. action[Eg. (38 with \y=0] gives rise to the following re-
In a renormalization-groufRG) approach the system is sponse and the correlation functiopd in the momentum

looked at on longer length scales by integrating out the efand frequency representation:

fects of small-scale fluctuations. When the system is rescaled

to the original scale, the effect of the small-scale fluctuations -

goes into the renormalization of the various parameters of (¢(q,w)¢(q',0’))=R(q,0)8(g+q" ) (w+w’),

the problem. The effective coupling constant observed at a

certain length scale is then given by the RG recursion rela-

tions. In this approach, in all the above cases ex@gpwith (d(q,0)p(q",0"))=C(q,0)5(q+q" ) (w+w'), (4

Il. GENERATING FUNCTIONAL




55 ROUGHENING OF A GROWING SURFACE OM . .. 6461

® ® I1l. RENORMALIZATION
(a)
C T A/\.< In the following we discuss the renormalization scheme to
A A obtain the physics at large distances, which, in the momen-
® tum space, corresponds to smal[19]. We use the descrip-
) (© (d tion of the fields as sum of the fast and slow modes defined
as
FIG. 1. Diagrammatic representations @) the correlation
function, (b) the response functior(c) &(r,t)¢(r’,t")cog(r,t) bs=¢(k) for O<k<A,
—¢(r',t’)], where dots represent many lines, and (d) — ok f A<k<A+ SA (10
B(r,1)(Ve)2. di=¢(k) for :

This separation of fast and slow modes is used to average out
the fast Fourier modes or the short-wavelength details of the
problem. These short-wavelength properties are incorporated

where

R(q,w)= Lz by the appropriate renormalization of the parameters in the
—lo+uxqg effective action that describes the large length scale proper-
) ties. By separation of the fast and slow Fourier modes, in
C(q,0)= O . 5) general, one arrives at the action
w?+ ,uzkzq

- JeAo( s o)
(suppressing subscrip).dn the momentum and time repre- z f 0s1;[<A Do Dgperc %%

sentation
- , % ool br 0 AI(bs b br . b1)
(SADB(—qt)=b(t—t' e Hea V), Xf oidd, Do Do et teh(Cat b
<¢(q.t>¢(—q,t'>>:2igze“““Zt"- ©) - [ Da.pGet e, 1

whereA, is the free action andl, is the interaction part that

wherefd(t)=1 if t>0 and zero otherwise. In real space contains both fast and slow modes. Here
0(t>0)

R(r.)= 4kt

e—r2/(4,uKt). (7) eA,(‘ﬁsv(ﬁs):eA0(¢sv¢s)<eAl(¢sv¢sv¢f 1‘f’f)>0> , (12)

where( )o~ denotes the average with respect to fast modes

The correlation function has a divergence due to the longs e free action. The next step is a cumulant expansion to
wavelength and for our purpose we define a difference COrzjeqrly identify the contribution from averaging of the fast
relation with a suitable ultraviolet regularization introduced

modes:
by a cutoffA as
eA/(qﬁs) — e.A0+ 5A, (13)

1
Y([r=r'[t=t")=5{[(r,t) = h(r',t")]?)

where

) dk = 2y _ 2
:fﬂ-K ?[1_Jo(k|r_r,|) 5-’4 <A|>+(<AI> <A|> )/2+ .
klsA
a The system in its original length scale is retrieved by rescal-
Xew'«kzltft’l]_ (8) ing the fields. Rescaling implies that under the transforma-
tion x—bx, t—b%, ¢—bX¢p and ¢—bX¢p. Around the
Our analysis involves this difference correlation. The corre-Gaussian fixed point we have=2, and in a two-

lation and the response functions are also connected by thmensional system the rescaling Ieads?t«% b*ZE with

fluctuation dissipation theore#DT), given as ¢ remaining invariant.
s The terms that contribute to the renormalization of vari-
8(t>0)d,C(k,t)= — 'u—R(k,t). 0 ous vertices have diagrammatic rep_resentann; that are pre-
2 sented as we proceed. In the following we consider one-loop

diagrams. In fact, in this approach since each internal line in
An important aspect of our system is the breaking of thethe diagram is within the shel\ + SA it is sufficient to
FDT. This violation of the FDT has previously been arguedconsider the diagrams with only one lof#0]. The effect of
in the dynamics of random phase sine-Gordon m¢di8].  the higher loops in the field-theoretic approdd#] is taken
The diagrams corresponding to the correlation and responsgare of in our approach by the vertex generated under renor-
functions are presented in_Fig. 1 along with the other twomalization. This feeds back to the renormalization of the
vertices¢ ¢’ cosip—¢') and p(V)2, whereg’ and¢’ de-  original vertex that we start with.
note the fields atr(,t’). These are the basic diagrams The nonlinear term causes a renormalization of the ten-
needed for the subsequent perturbative FRG. sion « and the temperatur&. We shall not elaborate on this
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FIG. 2. (a Vertex ¢(r,t)¢(r',t)[Ve(r,t)]>code(r,t) ay(r)
—¢(r',t')]. The hatched line represerf¥s(r,t). (b) and(c) Ori- (9—|=(4+roV)y(r)—2n|[y(r)—2A2y1(r)],
gin of this vertex. Figures on the left-hand side of the arrows show
the two-loop diagrams. The vertex is generated by snipping off one
internal line of the two-loop diagram. Diagrams found by this pro- Iyy(r) 2

cedure are shown on the right-hand side of the arrows. =(24r-V)y(r)— %%[7(”‘471“)/\2],
(159

(a) ®

5&

FIG. 3. Diagrams contributing to the renormalizationhof

(15d

dl

part since they are very well documented in previous work

[10]. The mobility i, as well as¥ andk, is renormalized by I\ N
the pinning potential. For local correlator this can be found —=— —zf dr A(r), (15f)
in Refs.[21,4]. The nonlocality of the correlator requires a gl 16m«

more general treatment, which is presented in the Appendix. ~

There is a possible renormalization of the pinning potential ﬂ=2'3+n (159
due to the nonlinearity. A straightforward diagrammatic ex- dl :

pansion would produce two-loop diagrafi®], as shown on ) Y 0)

the left-hand sides of Figs(1® and Fig. Zc). To include the ~Where  A(r)=¥(r)roJo(Ar)e" T and  B(rt)
effect of these in our RG scheme, we have to involve new= y(r)Jo(Ar)e #*e=Y("0_ The flow equation fory in
vertices whose one-loop contribution would be equivalent tghis form apparently dlffers from that of Ré¢fL2] for a short-
the effect of original diagrams. This vertex, shown in Fig.range correlation. They obtain Ye-dependent contribution,

2(a), is generated by the combinationlofand y(r) and will  which in our formulation appears through a vertexgener-
be denoted in the following ag,(r). The explicit form of ated under renormalization. Singg=0 is the initial condi-
this vertex is tion, one can write, for simplicity, the flow of as
~ o~ ay—m=(4+r.V) (r)—2ny(r)—Cx\?y(r), (16
f dr drdtdt’ ¥, (r—r")g(r,0)e(r' t") J) 7 X 7

xcod ¢(r,t)— (' t)[Vé(r,0)]2 (14) whereC is a constant, as it is in Ref12].

. . . . IV. DISCUSSION
It is possible to choose a symmetrized form for this vertex,

but the results will remain the same. ForA =0, the growth equation, Eql), corresponds to the
The nonlinearity also gets renormalized, unlike the casequilibrium problem[9]. In this case, we recover the equa-
with a local correlator of Refl12]. The diagrams contribut- tions of Ref.[9]. The recursion relation for the correlator of
ing to the renormalization of the nonlinearity is shown inthe form y(r)~cqr ~2¢ for larger implies thate remains
Fig. 3. The details of the derivation of various terms presentinchanged under renormalization, as has been observed in
in the recursion relations are described in the Appendixes. IIRef.[9]. It is only the amplitude, that is renormalized. It is
Appendix A we show the necessary details to find the renoralso apparent from Eq15d) that for A =0 the relevance or
malization of the tension. In Appendixes B and C, the renorrrelevance ofy(r) is determined by the value of , which
malizations of the disorder correlator and the nonlinearity argolays the role of temperature. For a perfect crystal with
discussed, respectively. The final flow equations of the pay(r)=g,, n,=2 determines the roughening transition,
rameters in terms of a dimensionless quantity: u9/8m«  whereas for short-range disordefr)=g,d(r), this bound-
are given as ary is atnj=1 [4,9].
For y(r)=gyd(r) the flow equation shows that is in-
1 variant under renormalization. This is in agreement with Ref.
E =ﬁf dr A(r), (158  [12]. For any other short-range form ¢{r) [e.g., exponen-
tially decayingy(r)], it is possible to see from E16), that
the width of the correlation defined agdr r2y(r)/
Jv(r)dr vanishes as one approachesc. Interestingly, for
= M_ﬁj dtdr B(r,1), (15b a long-range form ofy(r), as mentioned above, the integral
converges fora>1. This a=1 is the borderline for the
s o roughening and super-roughening transit[®. We there-
N upd (150 fore conclude that any short-range formyfr) leads to the
16x3(2m)’ same conclusion as R€f12], namely, that the large-scale

z?,u,_l

oY
W=4n,f dr dt B(r,t)+
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behavior of the growing surface is KPZ-like and the super-y, here. The random part of the KPZ nonlinearity is not
roughening transition is lost. With a power-law correlation of present in our work, but it will obviously be generated in
the disorder, this short-range limit is achieved when 1. higher order of\ contributions. In other words, the terms
Let us now consider € «<1. Note that the integral over that have been discussed in Ref3] are naturally generated
r in the flow equation foin is the same as that in the flow or present as the leading-order terms in our functional renor-
equation forx. Therefore, withy(r)~cor ~2¢, this integral  malization scheme with a finite cutoff, though they do not
is positive as long as>5/4— « as in Ref[9]. As a conse- occur in the dimensional regularization scheme of [REZ].
quence of this, the nonlinearity decreases with the lengtiWe have treated the periodic function completely. It is clear
scale. This is quite an astonishing feature arising due to thifom Sec. Ill that our renormalization is crucially dependent
nonlocality of the correlator. Recall that theterm occurs to  on the periodic function and, in fact, truncation to first order
take into account the lateral growth of the surface. Our resulof the cosine will never lead to any renormalization \af
suggests that at least at the initial stage, the lateral growth @imilarly, the finite force scheme is also dependent on the
the evolving surface is inhibited by the long-distance correperiodic function. We are therefore not sure whether the
lation of the quenched substrate disorder. The effect of thiteading-order terms in the expansion of the cosine function
decrease ok implies that the super-roughening transition is of Egs.(3b) and(14) can capture the whole effect, especially
unaffected up to the length scale below which our treatmenthe question of a different universality class. To address this
with F—0 is valid. If we stop at this leading order of the question one has to go to higher orders in the RG. This
flow equations, then frorf@] we can argue that fax<<1 one  remains to be done.
would observe roughening transition. There is, however, a
possibility of generation of a driving force due to the nonlin- V. SUMMARY

earity\ as given in the recursion relatid@Sg. The growth |y this paper we investigated the super-roughening transi-
of this force with the length sca[e requires a nonperturbativgion in the presence of a nonlinearity supporting a lateral
treatment of the forcgl1] (explained belowand the decay g owth of the surface. The disorder is considered to have a
of the nonlinearity is eventually prevented. The relevant|0ng_range correlation as discussed after E2]. A func-
length scale at which this crossover takes place can be Olyyng| renormalization-group analysis using a finite momen-
ta_lned by solving the coupled differential equation with andy, m cutoff leads to flow equations for the parameters of the
without the force term. Also note that, to this order, the ﬂowgrowing surface described by EqQ) and (3b), and a flow
of 1)/\2 and «, under renormalization, has an invariance gqyation for the disorder correlation. These equatias—
A\ «**=const, the physical origin of which is not clear to us. (154 predict the macroscopic properties of the surface. Our
Let us consider a finite force case. According to Rel],  equations reduce to the known form of REE2] for short-
a finite force for a perfect crystale(=0) implies a rough  range correlation of the disorder. The lateral growth gov-
surface with the height fluctuations having a power law scalgmeqd by the nonlinear term with coefficientis initially
ing with the length. To treat a finite force we redefine theg,ppressed due to the long-range disorder correlation. This is
height as apparent from Eq(15f). Therefore, at least at the initial stage
one might expect to see that the super-roughening transition
¢(r.O—¢(r,H+FL, remains unaffected. Over a large length scale a finite force
whereF is the external force. This implies a replacement of¢@n ultimately lead to a rough surface and destroy the tran-
the disorder part of the action as sition. This requires a treatment of a finite force as discussed
in Sec. IV. In our analysis, we have taken a finite cutoff and
@ 1 ~ ~ have shown that the terms that have been predicted from
Ao :f dt dt'dr dr'z yo(r—r") do(r,t) do(r',t") numerical lattice simulations are really generated, though our
analysis envisages a more general term.

X cog ho(r,t) = gho(r',t") + (t—t")F]. 17

The next step is the splitting of cosine into a product of sine

and cosine terms. Most crucial is the renormalizatior\ pf th I tIEa1pkNS.ttSche|dl for g]trsoduMcmghmt(ta t% th.'s f"]fld' I a!so
which follows from the possible contraction of the term ank 1. Nattermann an - M. bhattacharjee for various

Sin{ o(r 1) — dbo(r 't )]SI (t—t')F]. This leads to the flow useful comments. Support from SFB 341 is acknowledged.

equation forA analogous to that in Ref11]. We do not go APPENDIX A: RENORMALIZATION OF THE TENSION
into further details of the calculation since the procedure for

extracting this term is similar to the details given in the Ap- We discuss only the contribution of the pinning potential
pendixes. v(r) to the renormalization of the tension The renormal-
The connection with Ref.13] can also be understood in ization of the other quantities such as temperature and mo-
our approach. There the equation of motion contains a rarbility can be found out in an analogous way with appropriate
dom force. The generating functional obtained after averagdiagrams. One representative Feynman diagram that contrib-
ing over this random force is in fact the first term of E8b) utes to the renormalization of the tension is shown in Fig. 4.
in the expansion of the periodic cosine function. The randonThe external lines are associated with momentirand all
lateral drift velocity, as suggested in Rfl3], appears the internal lines contain fast momenta. However, the sum of
through a vertex similar ter; of Eq.(14) again as a first term all of the internal momenta should add up to yi&ldLet us
in the expansion of the periodic function. The only differ- choose one internal line with momentumA as shown in
ence is that there the twd¢ legs are nonlocal in time unlike Fig. 4. Its contribution in real space is

ACKNOWLEDGMENTS
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FIG. 5. Diagram contributing to the renormalization naf

. FIG. 4. Diagram contributing to the renormalization of the ten- from the following discussion. The contribution that comes
sion k. from the combined effect of the nonlinearity is at the two-
loop level and the possible diagrams are shown explicitly in
_ . Ref. [12]. The effect of these diagrams is incorporated
f dp Ad(p—A)exptip-r)C(p.t) through a higher-order vertex. The usual procedure that is
A2 wd adopted is to snip off the internal ling2] and generate
= —Jo(Ar) s——exp —uxA?|t))=G*?(r,t). another vertex. This vertex will renormalize the vertgx
2 2k when they are rejoined again. We pick up one such two-loop
(A1) diagram that contributes in the field-theoretic approach.
Snipping off one internal line leads to a vertex of the form

Therefore, the contribution of Fig. 4 is given in Eq.(14).
1 We call this vertexy,(r), which differs from they(r)
_f dt f drf dk exg —i(K—K)-r]G%4(r,)R(r,t) verte>$ by two_Vq’)-type legs. Onpe t_hey are rejoined this ver-
2 tex will contribute to renormalization of(r). The second

term with y, in Eq. (150 follows from this prescription. We

xexd = Y(r.D]y(k), (A2) now discuysls theqre(nordr)nalization of the vgrt@( T%ere are
where exp—Y(r,t)] takes care of the sum over all possible WO such possible diagrams that can originate from the origi-
diagrams that arise from all possible contractions of the inal two-loop diagrams and lead to the renormalization of
ternal lines, as it is in the case of the local correldtg?).  ¥1- From the other two-loop diagrams it is easy to observe
The other possibility arises when one associatesRHime that no such vertex that respects the symmetry of the system

with the momentum\.. In this case we have the line with the ¢an be formed. The contribution of the, vertex in the
fast momentum as renormalization ofy is identical to the contribution of the

y vertex itself, except for a multiplicative factdr?, which is
i obvious from a dimensional analysis. As it is evident from
f dp AS(p—A)expip-r)Ro(p,t) Fig. 2, this vertex is generated from the termQ{fAy). Itis
easy to evaluate the expressions of the diagrams in Fig. 2. In
the momentum and frequency representation, Ff) 2an
be expressed as

2

= — kA%t — 5 b,
27TJO(Ar),ue G®?(r,t) (A3)

and the full expression is A2 % t
=50 [at [ ot [ dkoRim -t

1 _
— | dt d dk —i(K=K)-r]1G?¢ t
ZJ J rf X —HK=k)-r]G*H(r.y X C (Ko t2)R(Kzpa 1 t1) (K1~ Kops) (K1 - Koma)

xex — Y(r,t)]7(k). (A4) _owd N ),
= Bak 16AZ 4 K (B2)

The flow equation for the tension is obtained by addition of
Egs.(A4) and(A2) with an extra symmetry factor, complet-
ing the integral ovek and extracting the term proportional
to K2. The simplified form given in Eq(159 is achieved by .
the use of the FDT and a subsequent integration by part%(c) IS
overt.

wherekyp; =K, +Kk4/2 andkymg =k, —Kk1/2 in the hydrody-
namic limit, i.e.,k;— 0. Similarly, the contribution from Fig.

pud A% y(r)

2
8wk 8k°A° 4 Ki. (B3

APPENDIX B: RENORMALIZATION OF vy

The first term in the flow equation of is, in fact, the A similar contribution comes from the vertex involving.
result of the contribution that comes from expanding the coThe combined expression leads to the recursion relation for
sine in the pinning potential. The simplest diagram in the oney, in Eq. (158. The vertexy, is completely the effect of
loop level is shown in Fig. 5. The corresponding expressiorrenormalization.
is

APPENDIX C: RENORMALIZATION OF A

¥(r) dk
2 f (ZW)ZAﬁ(k_A)C(k’O)' (B1) We notice that the possible one-loop diagrams that con-

tribute to the renormalization of the nonlinearity in the
This leads to the first term of the RG contribution in Eq. case of the nonlocal correlator are those shown in Fig. 3.
(15d). The second term withy; in Eq. (150 will be clear There are other possible diagrams that could lead to a con-
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9
\ \ ;/\ \ %\{} 6(t>0)c7te‘Y(’*t)=—%R(r,t)e_y“") (C5)

and subsequent integration oueleads to the following ex-
pression for Fig. @):

A
@‘ w ] o A0

®0 ®2) k,uAZJ f‘” ) 2
+ =Y(r,t)a— ukA t.
6 x dr . dt reJo(Ar)y(r)e e

FIG. 6. Diagrams that could contribute to the renormalization of
\, but vanish due to their mutual cancellation. (Co)

tribution in the renormalization of the nonlinearity. But we Combining the contributions of Figs(a and 3b) with the
note that they cancel altogether, for example, the diagramapPpropriate symmetry factor, we arrive at the recursion rela-

shown in Fig. 6. The expression corresponding to the diation for A o _ o
gram in Fig. 3a) is The diagrams in Fig. 6 can be evaluated in a similar man-

ner. The expression for Fig(&l) is

N[ dkg
——| w—=dw;R(ky,01)R(Ky,—
4f (277) w1 ( 1 0)1) ( 1 wl) f %f dw R(p+,w)c(p_’w)p.p_

oc k2r? . _
X | d dt = A Y(rt)aikyer —logt . .
f rfo A1) e Trene xfdrf dt y(r)R(r,t)Jo(p_r)e~ Y(rheiet
0

(CY

(C7

After the integration over the shell momentlknwe obtain
the contribution of Fig. &) as

2 4 dk
_MANA fdw 1 f WJ’ do R(p+,0)C(p-,@)p-p-
3272 Y (ukA?)?+ o]

and for Fig. 6b1l) is

o * —iwts—Y(r,
Xf dtf dr ,y(r)rZJO(Ar)eiwlte*Y(r,t)‘ Xf drjo dt y(r)R(r!t)e lote r t)JO(p+r)y
0
(C8
Furthermore, the integration over the frequency leads to the )
final contribution of Fig. 8) as wherep, =p/2+k andp_=p/2—k. In the above equations
p is the slow momentum and the contribution to theertex

UNAZ [ ) can arise from the following terms after adding Fig&a®
— fo dt dr r?y(r)Jo(Ar)e " Ve mett, and @b2):
f drf dt y(r)Jo(Ar)R(r,t)e YV dk 52p>
Similarly, the expression corresponding to Figb)3is 0 ' (2m)= "
_ 1
N[ dkg o f ot
~16) 2m)? do;R(ky, 1) C(Ky, @1) Xp-(p2=k) | do e (p%+ 0?)(p* +w?)
% . ® Y dk
><J drf0 dt r2R(r,t) y(r)kjr2e'erte Y0, + | dr . dtr y(r)Jo(Ar)R(r,t)e @2
(C3 p-k(—2iw)

Xp- (p/2—k)J dw €'t (CY

. N (p% +0?)(pl+0?)
After performing the integration over the momentum shell
and the frequency, we get for Fig(i3, We need not go into the final expression corresponding to
the combined contribution of Figs(&l) and Gbl). This is
” 2 — ukAZt A= Y(r 1) because, interestingly, the other two diagrams in Figs26
f drfo dt riy(DR(rHde(Ar)e © ' and Gb2) lead to the same contribution butith opposite
(CH sign, thereby canceling the contribution of Figga® and
6(b1). This cancellation leads to a considerable simplifica-
Use of the relation tion of the recursion relations.

NOu
1287 k2
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