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Roughening of a growing surface on a crystal with correlated disorder: Influence of nonlinearity

Sutapa Mukherji
Institut für Theoretische Physik, Universita¨t zu Köln, Zülpicher Strasse 77, D 50937 Ko¨ln, Germany

~Received 18 November 1996!

We study the growth of a crystal in the presence of correlated disorder on the substrate. Using a functional
renormalization group, we show, for a long-range disorder correlation, an initial decay of the Kardar-Parisi-
Zhang-type nonlinearity, though over a large length scale the behavior can be governed by the nonlinearity.
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PACS number~s!: 05.40.1j, 81.10.Aj, 05.70.Ln, 64.60.Ht
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I. INTRODUCTION

The equilibrium shape of a crystal surface undergoe
roughening transition from a rough high-temperature ph
to a smooth low-temperature phase as the temperature i
creased@1–3#. Above the roughening transitionTr , the
height fluctuations grow logarithmically with the dimensio
of the systemL and below the transition the height is smoo
and is independent ofL. The nonequilibrium counterpart, th
growth mechanism of such crystals, provides more insig
about the roughening transition@2#. It is found that for
T.Tr the growth is inactivated in nature, whereas f
T,Tr the growth is essentially by nucleation of droplets a
the growth velocity is exponentially slow in the inverse
the force. For an infinitesimal forceF, the mobility that is the
ratio of the growth velocity andF vanishes with a jump from
a finite value at the transition. With a finite force the tran
tion is blurred. The flat phase is destroyed over a large len
scale and eventually becomes rough. In this case a con
ous decrease of the mobility is observed as the temperatu
lowered@2#.

An interesting development in this direction is the incl
sion of the disorder of the underlying substrate@4#. The mor-
phology of the growing surface shows a transition that is
super-roughening transition at temperatureTsr. For T.Tsr,
the height fluctuation is the same as the high-tempera
phase of the usual roughening transition, but forT,Tsr the
surface is rougher than the thermal phase. There is a co
versy regarding the roughness of this super-rough ph
@5–7# though a recent numerical treatment@8# favors the size
dependence of the roughness as (lnL)2. A dynamical
renormalization-group treatment@4# shows that forT.Tsr
the effect of the disorder essentially vanishes over la
length scales and the scaling properties of the surface ar
same as that of a surface growing on a pure substrate, in
rough phase. The linear-response mobility in this sup
roughening transition vanishes continuously, unlike a ju
in the case of the roughening transition, asTsr is approached
from the high-temperature phase. ForT,Tsr there is a
temperature-dependent dynamical exponent and a nonli
response of the system to an external force. The connec
between these roughening and super-roughening transi
has been elucidated, furthermore, by a renormalization-gr
treatment of the growth on a substrate with a correlated
order @9#. The roughening transition turns into a supe
roughening transition as the correlation of the disorder
551063-651X/97/55~6!/6459~8!/$10.00
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cays sufficiently fast. By tuning the power law of the lon
range correlation of the disorder it is possible to go from
pure to the short-range disorder limit.

Such growth problems for crystals need to take into
count the periodicity perpendicular to the crystal surface a
is usually incorporated in the growth equation by a perio
pinning potential. The low-temperature, flat phase in
roughening transition is due to the relevance of this pinn
potential.

The nonequilibrium growth problem is complicated. O
has to take into account a relevant nonlinear term that
pears due to the lateral growth of an oblique surface@10#.
One of the major consequences of this Kardar-Parisi-Zh
~KPZ! nonlinearity is a power-law~not logarithmic! growth
of height fluctuations. In the context of the nonequilibriu
situation of a crystal surface, it has been argued that wit
finite force such a nonlinear term is generated by the in
play of the force and this pinning potential@11#. The
asymptotic behavior of the surface might then be determi
by the nonlinearity that can destroy the roughening tran
tion. A rough phase can appear even at low temperature
one starts with a nonlinear term, the lateral growth and
pinning potential combined lead to a phase factor in the p
ning potential@12#. This phase factor is also renormalized
one looks at the system over larger length scales. The re
malization of the phase factor makes the identification of
phases a nontrivial problem.

The disorder substrate case is also not well understo
Previous analysis in this direction with a short-range cor
lation of the disorder of the lattice showed that in the pr
ence of the nonlinearity a small driving force is relevant a
the asymptotic properties are essentially governed by
nonlinear term since the finite velocity leads to a smearing
the pinning potential@12#. A numerical investigation, on the
other hand, showed a generation of a quenched random
bility @13# and hence a different universality class. The lat
has been attributed essentially to the effect of a finite lat
cutoff.

In this paper we address the question of a large-scale
scription of the dynamics of a growing surface in the pre
ence of a disorder on the underlying lattice and a KPZ-ty
nonlinearity discussed before. We consider a very gen
form of the disorder correlation. In view of the conflictin
scenario mentioned above, our analysis is based o
renormalization-group technique that involves a finite latt
cutoff. A standard way of describing such a growth pheno
6459 © 1997 The American Physical Society



h

n
of
d

-
a

t
d
he
of
h

th

r

en

a

e

e

io

m
r-
r
-

e
c

s
e
al
n

t
ela

or-
of

la-
e-

se a
th
g-
al
l-

to
ec.
w
ht
gu-

the
on-
ize

e-
h a

ld

the

the

6460 55SUTAPA MUKHERJI
enon is to start from the equation of motion for the heig
f(r ,t) at time t and at coordinater in the two-dimensional
plane. As mentioned before, the lattice structure orthogo
to the crystal surface is respected through the inclusion
periodic potential. The equation of motion we need to stu
is therefore the usual sine-Gordon equation@4,9,11–13# sub-
jected to a constant driving forceF,

m21
]f~r ,t !

]t
5K¹2f~r ,t !2V sin@f~r ,t !1d~r !#

1l̄/2~¹f!21F1R~r ,t !, ~1!

whereK denotes the stiffness of the surface,m is the micro-
scopic mobility, andV is the strength of the pinning poten
tial. Here l̄ represents the strength of the nonlinearity th
allows a lateral growth of the surface andR represents the
thermal noise at temperatureT with a short-range correlation
given by

^R~r ,t !R~r 8,t8!&5~2T/m!d~r2r 8!d~ t2t8!. ~2!

In the presence of a random substrate we expect that
minima of the periodic potential will be randomly shifte
and this is incorporated in this equation through a quenc
random variabled(r ). We consider here a general form
the correlation associated with this random phase s

d(r ), asg0e
i [d(r )2d(r8)]5g(r2r 8), whereg051/2m2V2 and

the overbar denotes an average over the disorder. At
point we do not specify the functional form ofg(r2r 8), but
later we concentrate ong(r );r22a. We obtain the short-
range disorder case for largea and the perfect crystal fo
a50.

Various limiting forms of this equations that have be
studied are as follows.~i! The most well-studied limit is
V50 @14#. ~ii ! The pure equilibrium growth that shows
roughening transition is obtained withl̄5F5d50 @3,2#.
The width of the growing surface is conventionally describ
by the scalingw(L,t)5Lx f (t/Lz), wherex is the roughen-
ing exponent andz is the dynamical exponent. Above th
roughening transition, the width scales asw(L,t)
; ln@Lf(t/Lz)#, which impliesx50. In the low-temperature
flat phasew(L,t) is independent ofL. ~iii ! The nonequilib-
rium situation of this pure problem is described by equat
1 with d50, with or withoutF @11#. ~iv! The short-range
correlated disorder on the substrate follows fro
g(r )5g0d(r ) @4#. This shows the continuous supe
roughening transition.~v! A long-range correlated disorde
with g(r ); r22a and l̄50 shows the interpolation be
tween the roughening and super-roughening transition@9#.
Another interesting limitV5l̄50 and a quenched nois
R(f,r ) were used to study the dynamics of driven interfa
in a disordered medium@15#.

In a renormalization-group~RG! approach the system i
looked at on longer length scales by integrating out the
fects of small-scale fluctuations. When the system is resc
to the original scale, the effect of the small-scale fluctuatio
goes into the renormalization of the various parameters
the problem. The effective coupling constant observed a
certain length scale is then given by the RG recursion r
tions. In this approach, in all the above cases except~ii !, with
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FÞ0, l has been found not to be renormalized. The imp
tant feature that arises in our case is the renormalization
the nonlinearity due to the nonlocal property of the corre
tor. We obtain a surprising result that this nonlinearity d
cays initially with the length scale forF50. However, the
possible generation of a force and its relevance can cau
truncation of this decay of the nonlinearity and the grow
asymptotically becomes KPZ-like. In order to treat the lon
range correlation in general, we use the function
renormalization-group~FRG! approach where the renorma
ization of the correlation functiong(r ) and its effect on the
other parameters are studied.

The paper is organized as follows. Section II is devoted
the description of the effective generating functional. In S
III we derive the functional renormalization-group flo
equation with necessary diagrams. At this point we mig
add that our approach is simpler than the dimensional re
larization approach of Ref.@12#. Details of the calculations
are presented in the Appendixes. Section IV is devoted to
discussion of the asymptotic behavior of the system and c
nection with previous predictions. In Sec. V we summar
our results.

II. GENERATING FUNCTIONAL

The growth on a crystal substrate with disorder is d
scribed by the phase disordered sine-Gordon model wit
KPZ nonlinearity as described in Eq.~1!. We use the Martin-
Siggia-Rose formalism@16# that requires a response fie
f̃(r ,t). Averaging over the disorder@17# yields the generat-
ing functionalZ5*Df̃ Df exp@A#. HereA5A0

(0)1A0
(d) is

the effective action with the free and the disorder part of
action given, respectively, by

A0
~0!5E dt dr H 12q0f̃0~r ,t !

22f̃0~r ,t !Fm0
21ḟ0~r ,t !

2k0¹
2f0~r ,t !2

l0

2
@¹f0~r ,t !#

2G1 J̃0~r ,t !f̃0~r ,t !J ,
~3a!

A0
~d!5E dt dt8dr dr 8

1

2
g0~r2r 8!f̃0~r ,t !f̃0~r 8,t8!

3cos@f0~r ,t !2f0~r 8,t8!#, ~3b!

where f05f, q052mT, m051, k05mK, l05l̄m, and
J̃05mF are the bare quantities. The Gaussian part of
action @Eq. ~3a! with l050# gives rise to the following re-
sponse and the correlation functions@4# in the momentum
and frequency representation:

^f~q,v!f̃~q8,v8!&5R~q,v!d~q1q8!d~v1v8!,

^f~q,v!f~q8,v8!&5C~q,v!d~q1q8!d~v1v8!, ~4!
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55 6461ROUGHENING OF A GROWING SURFACE ONA . . .
where

R~q,v!5
m

2 iv1mkq2
,

C~q,v!5
qm2

v21m2k2q4
~5!

~suppressing subscript 0!. In the momentum and time repre
sentation

^f~q,t !f̃~2q,t8!&5u~ t2t8!me2mkq2~ t2t8!,

^f~q,t !f~2q,t8!&5
mq

2kq2
e2mkq2ut2t8u, ~6!

whereu(t)51 if t.0 and zero otherwise. In real space

R~r ,t !5
u~ t.0!

4pkt
e2r2/~4mkt !. ~7!

The correlation function has a divergence due to the lo
wavelength and for our purpose we define a difference c
relation with a suitable ultraviolet regularization introduc
by a cutoffL as

Y~ ur2r 8u,t2t8!5
1

2
^@f~r ,t !2f~r 8,t8!#2&

5
mq

4pkEuku<L

dk

k
@12J0~kur2r 8u!

3e2mkk2ut2t8u#. ~8!

Our analysis involves this difference correlation. The cor
lation and the response functions are also connected by
fluctuation dissipation theorem~FDT!, given as

u~ t.0!] tC~k,t !52
mq

2
R~k,t !. ~9!

An important aspect of our system is the breaking of
FDT. This violation of the FDT has previously been argu
in the dynamics of random phase sine-Gordon model@18#.
The diagrams corresponding to the correlation and respo
functions are presented in Fig. 1 along with the other t
verticesf̃f̃8cos(f2f8) andf̃(¹f)2, wheref̃8 andf8 de-
note the fields at (r 8,t8). These are the basic diagram
needed for the subsequent perturbative FRG.

FIG. 1. Diagrammatic representations of~a! the correlation
function, ~b! the response function,~c! f̃(r ,t)f̃(r 8,t8)cos@f(r ,t)
2f(r 8,t8)#, where dots represent manyf lines, and ~d!

f̃(r ,t)(¹f)2.
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III. RENORMALIZATION

In the following we discuss the renormalization scheme
obtain the physics at large distances, which, in the mom
tum space, corresponds to smallk @19#. We use the descrip
tion of the fields as sum of the fast and slow modes defi
as

fs5f~k! for 0,k,L,

f f5f~k! for L,k,L1dL. ~10!

This separation of fast and slow modes is used to average
the fast Fourier modes or the short-wavelength details of
problem. These short-wavelength properties are incorpor
by the appropriate renormalization of the parameters in
effective action that describes the large length scale pro
ties. By separation of the fast and slow Fourier modes
general, one arrives at the action

Z5E )
0<k,L

Df Df̃eA0~fs ,f̃s!

3E )
L<k,L1dL

Df Df̃ eA0~f f ,f̃ f !eAI ~fs ,f̃s ,f f ,f̃ f !

5E DfsDf̃se
A8~fs ,f̃s!, ~11!

whereA0 is the free action andAI is the interaction part tha
contains both fast and slow modes. Here

eA8~fs ,f̃s!5eA0~fs ,f̃s!^eAI ~fs ,f̃s ,f f ,f̃ f !&0. , ~12!

where^ &0. denotes the average with respect to fast mo
of the free action. The next step is a cumulant expansion
clearly identify the contribution from averaging of the fa
modes:

eA8~fs!5eA01dA, ~13!

where

dA5^AI&1~^AI
2&2^AI&

2!/21•••.

The system in its original length scale is retrieved by resc
ing the fields. Rescaling implies that under the transform
tion x→bx, t→bzt, f→bxf and f̃→bx̃ f̃. Around the
Gaussian fixed point we havez52, and in a two-
dimensional system the rescaling leads tof̃→b22f̃ with
f remaining invariant.

The terms that contribute to the renormalization of va
ous vertices have diagrammatic representations that are
sented as we proceed. In the following we consider one-l
diagrams. In fact, in this approach since each internal line
the diagram is within the shellL1dL it is sufficient to
consider the diagrams with only one loop@20#. The effect of
the higher loops in the field-theoretic approach@12# is taken
care of in our approach by the vertex generated under re
malization. This feeds back to the renormalization of t
original vertex that we start with.

The nonlinear term causes a renormalization of the t
sionk and the temperatureq. We shall not elaborate on thi
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6462 55SUTAPA MUKHERJI
part since they are very well documented in previous w
@10#. The mobilitym, as well asq andk, is renormalized by
the pinning potential. For local correlator this can be fou
in Refs. @21,4#. The nonlocality of the correlator requires
more general treatment, which is presented in the Appen
There is a possible renormalization of the pinning poten
due to the nonlinearity. A straightforward diagrammatic e
pansion would produce two-loop diagrams@12#, as shown on
the left-hand sides of Figs. 2~b! and Fig. 2~c!. To include the
effect of these in our RG scheme, we have to involve n
vertices whose one-loop contribution would be equivalen
the effect of original diagrams. This vertex, shown in F
2~a!, is generated by the combination ofl andg(r ) and will
be denoted in the following asg1(r ). The explicit form of
this vertex is

E dr dr8dt dt8 g1~r2r 8!f̃~r ,t !f̃~r 8,t8!

3cos@f~r ,t !2f~r 8,t8!#@¹f~r ,t !#2. ~14!

It is possible to choose a symmetrized form for this vert
but the results will remain the same.

The nonlinearity also gets renormalized, unlike the c
with a local correlator of Ref.@12#. The diagrams contribut
ing to the renormalization of the nonlinearity is shown
Fig. 3. The details of the derivation of various terms pres
in the recursion relations are described in the Appendixes
Appendix A we show the necessary details to find the ren
malization of the tension. In Appendixes B and C, the ren
malizations of the disorder correlator and the nonlinearity
discussed, respectively. The final flow equations of the
rameters in terms of a dimensionless quantitynl5mq/8pk
are given as

]k

] l
5

1

8pkE dr A~r !, ~15a!

]m21

] l
5
4nl
mqE dt dr B~r ,t !, ~15b!

]q

] l
54nlE dr dt B~r ,t !1

l2mq2

16k3~2p!
, ~15c!

FIG. 2. ~a! Vertex f̃(r ,t)f̃(r 8,t8)@¹f(r ,t)#2cos@f(r ,t)
2f(r 8,t8)#. The hatched line represents¹f(r ,t). ~b! and ~c! Ori-
gin of this vertex. Figures on the left-hand side of the arrows sh
the two-loop diagrams. The vertex is generated by snipping off
internal line of the two-loop diagram. Diagrams found by this p
cedure are shown on the right-hand side of the arrows.
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]g~r !

] l
5~41r•¹!g~r !22nl@g~r !22L2g1~r !#,

~15d!

]g1~r !

] l
5~21r•¹!g1~r !2

nll
2

64k2L2 @g~r !24g1~r !L2#,

~15e!

]l

] l
52

l

16pk2E dr A~r !, ~15f!

] J̃

] l
52J̃1nll, ~15g!

where A(r )5g(r )r 2J0(Lr )e2Y(r ,0) and B(r ,t)
5g(r )J0(Lr )e2mkL2te2Y(r ,t). The flow equation forg in
this form apparently differs from that of Ref.@12# for a short-
range correlation. They obtain al-dependent contribution
which in our formulation appears through a vertexg1 gener-
ated under renormalization. Sinceg150 is the initial condi-
tion, one can write, for simplicity, the flow ofg as

]g~r !

] l
5~41r•¹!g~r !22nlg~r !2Cl2g~r !, ~16!

whereC is a constant, as it is in Ref.@12#.

IV. DISCUSSION

Forl50, the growth equation, Eq.~1!, corresponds to the
equilibrium problem@9#. In this case, we recover the equ
tions of Ref.@9#. The recursion relation for the correlator o
the form g(r );c0r

22a for large r implies thata remains
unchanged under renormalization, as has been observe
Ref. @9#. It is only the amplitudec0 that is renormalized. It is
also apparent from Eq.~15d! that for l50 the relevance or
irrelevance ofg(r ) is determined by the value ofnl , which
plays the role of temperature. For a perfect crystal w
g(r )5g0, nl52 determines the roughening transitio
whereas for short-range disorderg(r )5g0d(r ), this bound-
ary is atnl51 @4,9#.

For g(r )5g0d(r ) the flow equation shows thatl is in-
variant under renormalization. This is in agreement with R
@12#. For any other short-range form ofg(r ) @e.g., exponen-
tially decayingg(r )#, it is possible to see from Eq.~16!, that
the width of the correlation defined as*dr r 2g(r )/
*g(r )dr vanishes as one approachesl→`. Interestingly, for
a long-range form ofg(r ), as mentioned above, the integr
converges fora.1. This a51 is the borderline for the
roughening and super-roughening transition@9#. We there-
fore conclude that any short-range form ofg(r ) leads to the
same conclusion as Ref.@12#, namely, that the large-scal

w
e
-

FIG. 3. Diagrams contributing to the renormalization ofl.
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55 6463ROUGHENING OF A GROWING SURFACE ONA . . .
behavior of the growing surface is KPZ-like and the sup
roughening transition is lost. With a power-law correlation
the disorder, this short-range limit is achieved whena.1.

Let us now consider 0,a,1. Note that the integral ove
r in the flow equation forl is the same as that in the flow
equation fork. Therefore, withg(r );c0r

22a, this integral
is positive as long asn.5/42a as in Ref.@9#. As a conse-
quence of this, the nonlinearity decreases with the len
scale. This is quite an astonishing feature arising due to
nonlocality of the correlator. Recall that thel term occurs to
take into account the lateral growth of the surface. Our re
suggests that at least at the initial stage, the lateral growt
the evolving surface is inhibited by the long-distance cor
lation of the quenched substrate disorder. The effect of
decrease ofl implies that the super-roughening transition
unaffected up to the length scale below which our treatm
with F→0 is valid. If we stop at this leading order of th
flow equations, then from@9# we can argue that fora,1 one
would observe roughening transition. There is, howeve
possibility of generation of a driving force due to the nonli
earityl as given in the recursion relation~15g!. The growth
of this force with the length scale requires a nonperturba
treatment of the force@11# ~explained below! and the decay
of the nonlinearity is eventually prevented. The releva
length scale at which this crossover takes place can be
tained by solving the coupled differential equation with a
without the force term. Also note that, to this order, the flo
of l and k, under renormalization, has an invarian
lk1/25const, the physical origin of which is not clear to u

Let us consider a finite force case. According to Ref.@11#,
a finite force for a perfect crystal (a50) implies a rough
surface with the height fluctuations having a power law sc
ing with the length. To treat a finite force we redefine t
height as

f~r ,t !→f~r ,t !1Ft,

whereF is the external force. This implies a replacement
the disorder part of the action as

A0
~d!5E dt dt8dr dr 8

1

2
g0~r2r 8!f̃0~r ,t !f̃0~r 8,t8!

3cos@f0~r ,t !2f0~r 8,t8!1~ t2t8!F#. ~17!

The next step is the splitting of cosine into a product of s
and cosine terms. Most crucial is the renormalization ofl,
which follows from the possible contraction of the ter
sin@f0(r ,t)2f0(r 8,t8)#sin@(t2t8)F#. This leads to the flow
equation forl analogous to that in Ref.@11#. We do not go
into further details of the calculation since the procedure
extracting this term is similar to the details given in the A
pendixes.

The connection with Ref.@13# can also be understood i
our approach. There the equation of motion contains a
dom force. The generating functional obtained after aver
ing over this random force is in fact the first term of Eq.~3b!
in the expansion of the periodic cosine function. The rand
lateral drift velocity, as suggested in Ref.@13#, appears
through a vertex similar tog1 of Eq. ~14! again as a first term
in the expansion of the periodic function. The only diffe
ence is that there the two¹f legs are nonlocal in time unlike
-
f

th
e

lt
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nt
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t
b-

l-

f

e
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g1 here. The random part of the KPZ nonlinearity is n
present in our work, but it will obviously be generated
higher order ofl contributions. In other words, the term
that have been discussed in Ref.@13# are naturally generated
or present as the leading-order terms in our functional ren
malization scheme with a finite cutoff, though they do n
occur in the dimensional regularization scheme of Ref.@12#.
We have treated the periodic function completely. It is cle
from Sec. III that our renormalization is crucially depende
on the periodic function and, in fact, truncation to first ord
of the cosine will never lead to any renormalization ofl.
Similarly, the finite force scheme is also dependent on
periodic function. We are therefore not sure whether
leading-order terms in the expansion of the cosine funct
of Eqs.~3b! and~14! can capture the whole effect, especia
the question of a different universality class. To address
question one has to go to higher orders in the RG. T
remains to be done.

V. SUMMARY

In this paper we investigated the super-roughening tra
tion in the presence of a nonlinearity supporting a late
growth of the surface. The disorder is considered to hav
long-range correlation as discussed after Eq.~2!. A func-
tional renormalization-group analysis using a finite mome
tum cutoff leads to flow equations for the parameters of
growing surface described by Eqs.~1! and ~3b!, and a flow
equation for the disorder correlation. These equations~15a!–
~15g! predict the macroscopic properties of the surface. O
equations reduce to the known form of Ref.@12# for short-
range correlation of the disorder. The lateral growth go
erned by the nonlinear term with coefficientl is initially
suppressed due to the long-range disorder correlation. Th
apparent from Eq.~15f!. Therefore, at least at the initial stag
one might expect to see that the super-roughening trans
remains unaffected. Over a large length scale a finite fo
can ultimately lead to a rough surface and destroy the tr
sition. This requires a treatment of a finite force as discus
in Sec. IV. In our analysis, we have taken a finite cutoff a
have shown that the terms that have been predicted f
numerical lattice simulations are really generated, though
analysis envisages a more general term.
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APPENDIX A: RENORMALIZATION OF THE TENSION

We discuss only the contribution of the pinning potent
g(r ) to the renormalization of the tensionk. The renormal-
ization of the other quantities such as temperature and
bility can be found out in an analogous way with appropria
diagrams. One representative Feynman diagram that con
utes to the renormalization of the tension is shown in Fig
The external lines are associated with momentumK and all
the internal lines contain fast momenta. However, the sum
all of the internal momenta should add up to yieldK. Let us
choose one internalC line with momentumL as shown in
Fig. 4. Its contribution in real space is
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E dp Ld~p2L!exp~ ip•r !C~p,t !

5
L2

2p
J0~Lr !

mq

2kL2 exp~2mkL2utu![Gf,f~r ,t !.

~A1!

Therefore, the contribution of Fig. 4 is

1

2E dt E drE dk exp@2 i ~K2k!•r #Gff~r ,t !R~r ,t !

3exp@2Y~r ,t !#g~k!, ~A2!

where exp@2Y(r,t)# takes care of the sum over all possib
diagrams that arise from all possible contractions of the
ternal lines, as it is in the case of the local correlator@4,12#.
The other possibility arises when one associates theR line
with the momentumL. In this case we have the line with th
fast momentum as

E dp Ld~p2L!exp~ ip•r !R0~p,t !

5
L2

2p
J0~Lr !me2mkL2t[Gf,f̃~r ,t ! ~A3!

and the full expression is

1

2E dt E drE dk exp@2 i ~K2k!•r #Gff̃~r ,t !

3exp@2Y~r ,t !#g~k!. ~A4!

The flow equation for the tension is obtained by addition
Eqs.~A4! and~A2! with an extra symmetry factor, comple
ing the integral overk and extracting the term proportiona
to K2. The simplified form given in Eq.~15a! is achieved by
the use of the FDT and a subsequent integration by p
over t.

APPENDIX B: RENORMALIZATION OF g

The first term in the flow equation ofg is, in fact, the
result of the contribution that comes from expanding the
sine in the pinning potential. The simplest diagram in the o
loop level is shown in Fig. 5. The corresponding express
is

g~r !

2 E dk

~2p!2
Ld~k2L!C~k,0!. ~B1!

This leads to the first term of the RG contribution in E
~15d!. The second term withg1 in Eq. ~15d! will be clear

FIG. 4. Diagram contributing to the renormalization of the te
sionk.
-

f

ts

-
e
n

.

from the following discussion. The contribution that com
from the combined effect of the nonlinearity is at the tw
loop level and the possible diagrams are shown explicitly
Ref. @12#. The effect of these diagrams is incorporat
through a higher-order vertex. The usual procedure tha
adopted is to snip off the internal line@22# and generate
another vertex. This vertex will renormalize the vertexg
when they are rejoined again. We pick up one such two-lo
diagram that contributes in the field-theoretic approa
Snipping off one internal line leads to a vertex of the for
given in Eq.~14!.

We call this vertexg1(r ), which differs from theg(r )
vertex by two¹f-type legs. Once they are rejoined this ve
tex will contribute to renormalization ofg(r ). The second
term withg1 in Eq. ~15d! follows from this prescription. We
now discuss the renormalization of the vertexg1. There are
two such possible diagrams that can originate from the or
nal two-loop diagrams and lead to the renormalization
g1. From the other two-loop diagrams it is easy to obse
that no such vertex that respects the symmetry of the sys
can be formed. The contribution of theg1 vertex in the
renormalization ofg is identical to the contribution of the
g vertex itself, except for a multiplicative factorL2, which is
obvious from a dimensional analysis. As it is evident fro
Fig. 2, this vertex is generated from the term ofO(l2g). It is
easy to evaluate the expressions of the diagrams in Fig. 2
the momentum and frequency representation, Fig. 2~b! can
be expressed as

2
l2

4
g~r !E

0

`

dt2E
0

t2
dt1E dk2R~k2m1 ,t22t1!

3C~k2m1 ,t2!R~k2p1 ,t1!~k1•k2p1!~k1•k2m1!

52
mq

8pk

l2

16k2L2

g~r !

4
k1
2 , ~B2!

wherek2p15k21k1/2 andk2m15k22k1/2 in the hydrody-
namic limit, i.e.,k1→0. Similarly, the contribution from Fig.
2~c! is

mq

8pk

l2

8k2L2

g~r !

4
k1
2 . ~B3!

A similar contribution comes from the vertex involvingg1.
The combined expression leads to the recursion relation
g1 in Eq. ~15e!. The vertexg1 is completely the effect of
renormalization.

APPENDIX C: RENORMALIZATION OF l

We notice that the possible one-loop diagrams that c
tribute to the renormalization of the nonlinearityl in the
case of the nonlocal correlator are those shown in Fig
There are other possible diagrams that could lead to a c

-

FIG. 5. Diagram contributing to the renormalization ofg.
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tribution in the renormalization of the nonlinearity. But w
note that they cancel altogether, for example, the diagr
shown in Fig. 6. The expression corresponding to the d
gram in Fig. 3~a! is

2
l

4E dk1
~2p!2

dv1R~k1 ,v1!R~k1 ,2v1!

3E drE
0

`

dt g~r !
k1
2r 2

2
e2Y~r ,t !eik1•re2 iv1t.

~C1!

After the integration over the shell momentumk1 we obtain
the contribution of Fig. 3~a! as

2
m2lL4

32p2 E dv1

1

~mkL2!21v1
4

3E
0

`

dtE dr g~r !r 2J0~Lr !eiv1te2Y~r ,t !.

Furthermore, the integration over the frequency leads to
final contribution of Fig. 3~a! as

2
mlL2

32pk E0
`

dt dr r 2g~r !J0~Lr !e2Y~r ,t !e2mkL2t.

~C2!

Similarly, the expression corresponding to Fig. 3~b! is

2
l

16E dk1
~2p!2

dv1R~k1 ,v1!C~k1 ,v1!

3E drE
0

`

dt r2R~r ,t !g~r !k1
2r 2eiv1te2Y~r ,t !.

~C3!

After performing the integration over the momentum sh
and the frequency, we get for Fig. 3~b!,

2
lqm

128pk2E drE
0

`

dt r2g~r !R~r ,t !J0~Lr !e2mkL2te2Y~r ,t !.

~C4!

Use of the relation

FIG. 6. Diagrams that could contribute to the renormalization
l, but vanish due to their mutual cancellation.
s
-

e

l

u~ t.0!] te
2Y~r ,t !52

mq

2
R~r ,t !e2Y~r ,t ! ~C5!

and subsequent integration overt leads to the following ex-
pression for Fig. 3~b!:

2
l

64pk2E dr r 2J0~Lr !g~r !e2Y~r ,0!

1
lmL2

64pk E drE
0

`

dt r2J0~Lr !g~r !e2Y~r ,t !e2mkL2t.

~C6!

Combining the contributions of Figs. 3~a! and 3~b! with the
appropriate symmetry factor, we arrive at the recursion re
tion for l.

The diagrams in Fig. 6 can be evaluated in a similar m
ner. The expression for Fig. 6~a1! is

E dk

~2p!2
E dv R~p1 ,v!C~p2 ,v!p•p2

3E drE
0

`

dt g~r !R~r ,t !J0~p2r !e2Y~r ,t !eivt

~C7!

and for Fig. 6~b1! is

E dk

~2p!2
E dv R~p1 ,v!C~p2 ,v!p•p2

3E drE
0

`

dt g~r !R~r ,t !e2 ivte2Y~r ,t !J0~p1r !,

~C8!

wherep15p/21k andp25p/22k. In the above equations
p is the slow momentum and the contribution to thel vertex
can arise from the following terms after adding Figs. 6~a1!
and 6~b1!:

E drE
0

`

dt g~r !J0~Lr !R~r ,t !e2Y~r ,t ! E dk

~2p!2
2p1

2

3p•„p/22k…E dv eivt
1

~p1
4 1v2!~p2

4 1v2!

1E drE
0

`

dt r g~r !J0~Lr !R~r ,t !e2Y~r ,t !E dk

~2p!2

3p•„p/22k…E dv eivt
p•k~22iv!

~p1
4 1v2!~p2

4 1v2!
. ~C9!

We need not go into the final expression corresponding
the combined contribution of Figs. 6~a1! and 6~b1!. This is
because, interestingly, the other two diagrams in Figs. 6~a2!
and 6~b2! lead to the same contribution butwith opposite
sign, thereby canceling the contribution of Figs. 6~a1! and
6~b1!. This cancellation leads to a considerable simplific
tion of the recursion relations.

f
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